skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Person, Mark"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent advances in marine electromagnetic surveys have allowed geophysicists to interpret and map offshore freshwater resources with unprecedented resolution and to test inferences regarding onshore-offshore hydrologic connections. To date, however, little is known about the timing or isotopic composition of this unconventional water resource. Here, we reconstructed the Pleistocene hydrogeology of the U.S. Atlantic continental shelf using a cross-sectional paleo-hydrogeologic model to explore possible mechanisms and timing of freshwater emplacement offshore Martha’s Vineyard, Massachusetts. We considered two scenarios in which the Laurentide ice sheet extended different distances offshore, and a third scenario without any ice sheet. The hydrostratigraphic framework was constructed by integrating borehole lithology data, seismic data, and formation resistivity data. Model results were compared to formation resistivity data as well as borehole salinity, groundwater residence time, and stable isotope profiles. Neither of the ice-sheet scenarios provided a significantly better fit to the onshore isotopic and offshore salinity observations than the third scenario. All three model scenarios predicted freshwater emplacement within Tertiary and Cretaceous units. Pleistocene deposits were largely devoid of freshened groundwater. Simulated groundwater residence times for the midshelf region ranged between 104 and 106 yr at depths of <500 m. Simulated groundwater ages from wells completed within Pleistocene confined aquifers are consistent with measured groundwater ages within confined aquifers of Martha’s Vineyard and Nantucket Island (2750−5900 yr). Analysis of onshore 3H/3He dating data indicates that some wells contain a mixture of old and modern (<60 yr) groundwater. Calculated fossil groundwater in the midshelf region that included ice-sheet loading retained relatively low δ18O values, consistent with glacial meltwater recharge. Model results suggest that much of the freshwater emplacement occurred within the last glacial cycle and that the island and offshore hydrogeologic systems appear to be connected. 
    more » « less
    Free, publicly-accessible full text available March 30, 2026
  2. Abstract While it has been known for some time that reducing fluids have bleached red beds adjacent to fault zones and regionally across the Colorado Plateau, the volumes of fluids expelled along faults have never been quantified. We have developed and applied a suite of one-dimensional hydrologic models to test the hypothesis that internally generated, reducing fluids migrated up sub-basin bounding faults across the Paradox Basin and bleached overlying red beds. The internal fluid driving mechanisms included are mechanical compaction, petroleum and natural gas generation, aquathermal expansion of water, and clay dewatering. The model was calibrated using pressure, temperature, porosity, permeability, and vitrinite reflectance data. Model results indicate that sediment compaction was the most important pressure generation mechanism, producing the majority of internal fluids sourced during basin evolution. Peak fluid migration occurred during the Pennsylvanian–Permian (325–300 Ma) and Cretaceous (95–65 Ma) periods, the latter being concurrent with simulated peak oil/gas generation (87–74 Ma), which likely played a role in the bleaching of red beds. Batch geochemical advection models and mass balance calculations were utilized to estimate the volume of bleaching in an idealized reservoir having a thickness (~100 m) and porosity (0.2) corresponding to bleached reservoirs observed in the Paradox Basin. Bleaching volume calculations show that internal fluid driving mechanisms were likely responsible for fault-related alteration observed within the Wingate, Morrison, and Navajo Formations in four localities across the Paradox Basin in the Colorado Plateau, Utah and Colorado, USA. The volume calculation required that 33%–55% of the total basinal fluids, composed of hydrogen-sulfide and paleo-seawater, migrated into an overlying red bed reservoir (0.5 wt% Fe2O3). 
    more » « less
    Free, publicly-accessible full text available January 30, 2026
  3. The Paradox Basin in the Colorado Plateau (USA) has some of the most iconic records of paleofluid flow, including sandstone bleaching and ore mineralization, and hydrocarbon, CO2, and He reservoirs, yet the sources of fluids responsible for these extensive fluid-rock reactions are highly debated. This study, for the first time, characterizes fluids within the basin to constrain the sources and emergent behavior of paleofluid flow resulting in the iconic rock records. Major ion and isotopic (δ18Owater; δDwater; δ18OSO4; δ34SSO4; δ34SH2S; 87Sr/86Sr) signatures of formation waters were used to evaluate the distribution and sources of fluids and water-rock interactions by comparison with the rock record. There are two sources of salinity in basinal fluids: (1) diagenetically altered highly evaporated paleo-seawater-derived brines associated with the Pennsylvanian Paradox Formation evaporites; and (2) dissolution of evaporites by topographically driven meteoric circulation. Fresh to brackish groundwater in the shallow Cretaceous Burro Canyon Formation contains low Cu and high SO4 concentrations and shows oxidation of sulfides by meteoric water, while U concentrations are higher than within other formation waters. Deeper brines in the Pennsylvanian Honaker Trail Formation were derived from evaporated paleo-seawater mixed with meteoric water that oxidized sulfides and dissolved gypsum and have high 87Sr/86Sr indicating interaction with radiogenic siliciclastic minerals. Upward migration of reduced (hydrocarbon- and H2S-bearing) saline fluids from the Pennsylvanian Paradox Formation along faults likely bleached sandstones in shallower sediments and provided a reduced trap for later Cu and U deposition. The distribution of existing fluids in the Paradox Basin provides important constraints to understand the rock record over geological time. 
    more » « less
  4. Shallow seabed depressions attributed to focused fluid seepage, known as pockmarks, have been documented in all continental margins. In this study, we demonstrate how pockmark formation can be the result of a combination of multiple factors—fluid type, overpressures, seafloor sediment type, stratigraphy and bottom currents. We integrate multibeam echosounder and seismic reflection data, sediment cores and pore water samples, with numerical models of groundwater and gas hydrates, from the Canterbury Margin (off New Zealand). More than 6800 surface pockmarks, reaching densities of 100 per km2, and an undefined number of buried pockmarks, are identified in the middle to outer shelf and lower continental slope. Fluid conduits across the shelf and slope include shallow to deep chimneys/pipes. Methane with a biogenic and/or thermogenic origin is the main fluid forming flow and escape features, although saline and freshened groundwaters may also be seeping across the slope. The main drivers of fluid flow and seepage are overpressure across the slope generated by sediment loading and thin sediment overburden above the overpressured interval in the outer shelf. Other processes (e.g. methane generation and flow, a reduction in hydrostatic pressure due to sea-level lowering) may also account for fluid flow and seepage features, particularly across the shelf. Pockmark occurrence coincides with muddy sediments at the seafloor, whereas their planform is elongated by bottom currents. 
    more » « less
  5. Abstract Offshore meteoric groundwater (OMG) has long been hypothesized to be a driver of seafloor geomorphic processes in continental margins worldwide. Testing this hypothesis has been challenging because of our limited understanding of the distribution and rate of OMG flow and seepage, and their efficacy as erosive/destabilizing agents. Here we carry out numerical simulations of groundwater flow and slope stability using conceptual models and evolving stratigraphy—for passive siliciclastic and carbonate margin cases—to assess whether OMG and its evolution during a late Quaternary glacial cycle can generate the pore pressures required to trigger mechanical instabilities on the seafloor. Conceptual model results show that mechanical instabilities using OMG flow are most likely to occur in the outer shelf to upper slope, at or shortly before the Last Glacial Maximum sea‐level lowstand. Models with evolving stratigraphy show that OMG flow is a key driver of pore pressure development and instability in the carbonate margin case. In the siliciclastic margin case, OMG flow plays a secondary role in preconditioning the slope to failure. The higher degree of spatial/stratigraphic heterogeneity of carbonate margins, lower shear strengths of their sediments, and limited generation of overpressures by sediment loading may explain the higher susceptibility of carbonate margins, in comparison to siliciclastic margins, to mechanical instability by OMG flow. OMG likely played a more significant role in carbonate margin geomorphology (e.g., Bahamas, Maldives) than currently thought. 
    more » « less
  6. Abstract Over the past 35 years the Buckman wellfield near Santa Fe, New Mexico, experienced production well drawdowns in excess of 180 m, resulting in ground subsidence and surface cracks. Increased reliance on surface water diversions since 2011 has reduced pumping and yielded water level recovery. To characterize the impact of wellfield management decisions on the aquifer system, we reconstruct the surface deformation history through the European Remote Sensing Satellite, Advanced Land Observing Satellite, and Sentinel‐1 Interferometric Synthetic Aperture Radar (InSAR) time series analysis during episodes of drawdown (1993–2000), recovery (2007–2010), and modern management (2015–2018) in discontinuous observations over a 25‐year period. The observed deformation generally reflects changes in hydraulic head. However, at times during the wellfield recovery, the deformation signal is complex, with patterns of uplift and subsidence suggesting a compartmentalized aquifer system. Recent records of locally high geothermal gradients and an overall warming of the system (~0.5°C during the water level recovery) obtained from repeat temperature measurements between 2013 and 2018 constrain a conceptual model of convective heat transfer that requires a vertical permeable zone near an observed fault. To reproduce observed temperature patterns at monitoring wells, high basal heat flow and convective cooling associated with downward flow of water from cool shallow aquifers during the drawdown period is necessary. The fault, however, appears to die out southward or may be locally permeable, as conceptual cross‐sectional hydrologic modeling reproduces the surface deformation without such a structure. Our work demonstrates the importance of incorporating well‐constrained stratigraphy and structure when modeling near‐surface deformation induced by, for instance, groundwater production. 
    more » « less
  7. The flow of terrestrial groundwater to the sea is an important natural component of the hydrological cycle. This process, however, does not explain the large volumes of low-salinity groundwater that are found below continental shelves. There is mounting evidence for the global occurrence of offshore fresh and brackish groundwater reserves. The potential use of these non-renewable reserves as a freshwater resource provides a clear incentive for future research. But the scope for continental shelf hydrogeology is broader and we envisage that it can contribute to the advancement of other scientific disciplines, in particular sedimentology and marine geochemistry. 
    more » « less